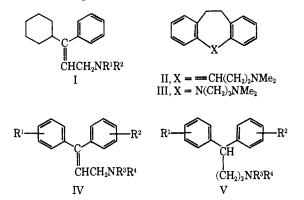
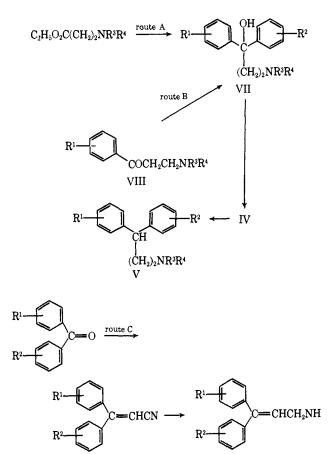
Substituted 1,1-Diphenyl-3-aminoprop-1-enes and 1,1-Diphenyl-3-aminopropanes as Potential Antidepressant Agents


G. JONES, R. F. MAISEY,* A. R. SOMERVILLE, AND B. A. WHITTLE

Imperial Chemical Industries Limited, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire, England

Received A pril 13, 1970

A series of substituted 1,1-diphenyl-3-aminoprop-1-enes and 1,1-diphenyl-3-aminopropanes has been prepared. These compounds display interesting properties as potential antidepressant agents.

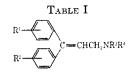

The observation of antireserpine activity of a low order in compounds of the general structure I¹ and the structural relationship of these compounds to known antidepressant drugs, such as amitryptyline (II) and imipramine (III), led us to investigate the pharmacological properties of compounds of the general structures IV and V. 1,1-Diphenyl-3-aminoprop-1-enes (IV) and 1,1-diphenyl-3-aminopropanes (V) have previously been examined as potential analgetics,² antihistamines,³ antispasmodics,^{3,4} and analeptics.⁵ This paper is concerned with the synthesis of new compounds of the generic structures IV and V and their evaluation as potential antidepressants.

Chemistry.—The 1,1-diphenyl-3-aminoprop-1-enes IV were prepared in most cases by the methods illustrated below. The amino alcohols VII in which $R^1 = R^2$ were prepared best by reaction of a Grignard reagent with the appropriate ethyl β -aminopropionate derivative VI (route A). The alternative reaction of a Grignard reagent with a Mannich base VIII (route B) generally gave inferior yields, probably on account of enolization of the Mannich base.⁶

Dehydration of amino alcohols VII in which the aromatic rings have different substituents $(R^1 \neq R^2)$ gave rise to mixtures of the geometrical isomers of the corresponding 1,1-diphenyl-3-aminoprop-1-enes. It was evident from the nmr spectra of these products that the geometrical isomers were generally formed in about equal proportions. Isomeric mixtures were tested as such in the form of either the HCl or oxalate salt.

- (1) Unpublished observation from this laboratory.
- (2) P. A. J. Janssen, "Synthetic Analgesics," Part 1, Pergamon Press, London, 1960.
- (3) A. C. White, A. F. Green, and A. Hudson, Brit. J. Pharmacol, 6, 560 (1951).
- (4) P. V. Petersen, Acta Pharmacol. Toxicol., 7, 51 (1951).
- (5) K. Zipf, Arzneimitt.-Forsch., 13, 166 (1963).
- (6) R. Baltzly and J. W. Billinghurst, J. Org. Chem., 30, 4330 (1965).

Primary 1,1-diphenyl-3-aminoprop-1-enes (IV, $R^3 = R^4 = H$) were prepared by LAH reduction of the corresponding unsaturated nitriles (route C). When this reaction was carried out in Et₂O at room temp reduction of the conjugated double bond was significant, but at -20° reduction of the nitrile was not accompanied by reduction of the double bond.


1,1-Diphenyl-3-aminopropanes (V) were prepared by catalytic hydrogenation of the corresponding 1,1-diphenyl-3-aminoprop-1-enes (IV) or, in the case of secondary amines (V, $R^3 = H$), by hydrogenolysis of the corresponding 1,1-diphenyl-3-benzylaminoprop-1-enes (IV, $R^3 = CH_2C_8H_5$).

Structure-Activity Relationships.—The more active members of this series, e.g., 6, 16, and 17, have activities comparable with those of known clinically effective antidepressants such as amitryptyline or imipramine, and some, particularly the monomethylamino compounds, e.g., 5, 15, and 18, are more active in the pharmacological and biochemical tests reported.

In the olefinic series substitution in the Ph rings with halogen, especially F, marginally improves the

^(*) To whom inquiries should be addressed.

% inhi-

$\begin{array}{c c c c c c c c c c c c c c c c c c c $											bition	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										Reversel of		Onal
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							Vield ^a	Mn of HCl or			-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B1	R ²	R ³	B4	Method			Formula ^f			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	-	-							, _, _	MB/ 111	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											0.6	201
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							40					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							84				00	211
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
11 H H A 165-167 $C_{11}H_{17}CIN^3$ 100 12 H H A 209-210 $C_{28}H_{34}CIN^3$ 100 13 H H A 218-219 $C_{11}H_{17}CIN^5$ 100 14 H H A 218-219 $C_{11}H_{17}CIN^5$ 100 15 4-F H CH, H B 22 36-140 $C_{11}H_{17}CIN^5$ 100 16 4-F H CH, H B 218-219 $C_{11}H_{17}CIN^5$ 100 17 3-F H CH, H B 22 136-140 $C_{11}H_{17}CIN^5$ 0.6 81 225 17 3-F H CH, H B 12 104-142 $C_{11}H_{17}CIN^5$ 0.7 98 110 20 4-B H CH_1 B 35 170-171 C_{11}CIN^5N 3 118 21 3-CF_1 H CH_1 H B 121-216 C_{11}CIN^5N 3 128							60					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10			011,011011,			00	110 111	01811200114	100		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	ਮ	ਮ		N I			165-167	CHUCIND	100		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	11	11			A		103-107	C191122C114	100		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	Н	н		N /	A		209-210	${ m C}_{20}{ m H}_{24}{ m ClN}^b$	100		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					<u> </u>							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	н	н		N Q	A		218-219	$C_{19}H_{22}ClNO^b$	100		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	Н	н		N NCH3	А	75	195-200	$C_{20}H_{26}Cl_2N_2^b$	100		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	4-F	ਸ	CH.	ч	в	22	136-140	C.H.CIEN	0.6	90	177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											97	201
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												287
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												-0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											99	< 200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											94	472
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											73	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35											409
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
Amitriptyline 3 92 420 Imipramine 7 94 680 Desimipramine 0.8–1.6 92 Nortriptyline 1.0–2.0 94	37	(e)										
Imipramine 7 94 680 Desimipramine 0.8-1.6 92 Nortriptyline 1.0-2.0 94											92	420
Desimipramine 0.8-1.6 92 Nortriptyline 1.0-2.0 94												680
Nortriptyline 1.0-2.0 94												
											94	
	4 Overall			ased on ester (A) or Manni	ich hase.	HCL (B). ^b Described	l in the liters	ture. Redu	iction o	of N-Ac

^a Overall yield for both stages based on ester (A) or Mannich base-HCl (B). ^b Described in the literature. ^c Reduction of N-Ac derivative with LAH. See ref 12. ^d Reductive alkylation of amino compd with NaBH₄ and Me₂CO. See ref 12. ^e Ph replaced by thienyl. ^f All compounds, except those with footnote b, were analyzed for C, H, N.

activity; other substituents are usually dystherapeutic. High activity is retained only in compounds in which N is substituted with either N and Me or two Me radicals, the secondary amines being markedly superior in their ability to inhibit the uptake of 5-HT by human platelets. Substitution of the CH_2 adjacent to N with Me or substitution of the olefinic H with Me diminishes the activity. Replacement of propenyl by a butenyl skeleton is, unexpectedly in view of the amitryptyline structure II, dystherapeutic.

The saturated compounds are in general marginally less active, but with this reservation the same relationships hold as for the unsaturated series.

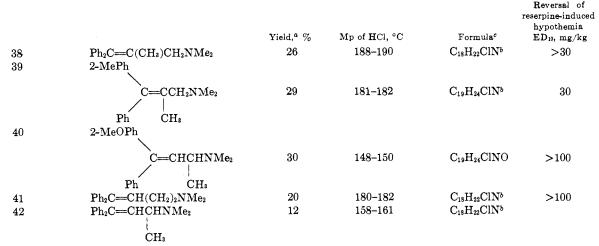
Experimental Section

Pharmacology. Test Methods.—The potential antidepressant activity of the test compounds was assessed by their ability to antagonize reserpine-induced hypothermia⁷ in mice. In the case of the more active members of the series this test was supplemented by a detn of the compds' capacity to inhibit the uptake of 5-HT into human platelets.⁸ The limitations of these tests in the prediction of clinically useful antidepressant activity are well known and have been documented.⁹⁻¹¹ One to four groups of 6 mice per treatment were given reserpine (2 mg of base/kg sc as the phosphate). Seventeen hours later the temp of the mice (T_0) was recorded, and the animals were dosed orally with the antidepressant treatment or saline. The temps (T_2 , T_4 , and T_6) were measured by means of an orally inserted probe and displayed on an electric thermometer (type 3G10, Light Labo-

⁽⁷⁾ J.-R. Boissier, J. Fichelle-Pagny, P. Simon, Therapie, 21, 109 (1966).

⁽⁸⁾ A. Todrick, A. C. Tait, J. Pharm. Pharmacol., 21, 751 (1969).

⁽⁹⁾ L. Gyermek, Int. Rev. Neurobiol., 9, 95 (1966).


⁽¹⁰⁾ L. J. Hekimian, S. Gershon, and A. Floyd, Curr. Therapeutic Res., 10, 282 (1968).

⁽¹¹⁾ S. Gershon, L. J. Hekimian, and A. Floyd, Arzneimitt.-Forsch., 18, 243 (1968).

Reversal of

%

TABLE II

^a Compds 38-42 were prepd from PhMgBr and the corresponding aminoacetone followed by dehydration of the aminoacetone. The overall yield is based upon the aminoacetone. ^b Described in the literature. ^c See footnote f, Table I.

TABLE III R¹ CHCH₂CH₂NR³R⁴

						Mp of HCl		reserpine- induced hypothemia	inhibition of 2-HT uptake a
	R1	R²	R ³	\mathbf{R}^4	Yield, %	or oxalate, °C	$Formula^{a}$	ED10, mg/kg	10 µg/mlt
43	н	H	CH_3	н			$\mathrm{C_{16}H_{20}ClN^{b}}$		
44	Н	Н	CH_3	CH_{3}	78	169 - 170	$\mathrm{C}_{17}\mathrm{H}_{22}\mathrm{ClN}^{b}$	3	87
45	3 - F	н	CH_3	CH_3	69	166 - 168	$C_{17}H_{21}CIFN$	2	
46	4- F	н	CH_{3}	CH_3	80	141-144	$C_{17}H_{21}ClFN$	3	
47	4-Cl	H	CH_3	CH_3	7 0	155 - 157	$\mathrm{C_{17}H_{21}Cl_2N}$	50	90
48	3-CF ₃	H	CH_3	CH_3	76	145 - 148	$\mathrm{C}_{18}\mathrm{H}_{21}\mathrm{ClF_3N}$	8.5	
49	2-Me	H	CH_3	CH_3	86	164 - 166	$C_{18}H_{24}ClN$	20	
50	2-MeO	H	CH_3	CH_{3}	86	166 - 167	$C_{18}H_{24}CINO$	15	
51	3-F	3 - F	CH_3	CH_3	87	178-180	$\mathrm{C_{17}H_{20}ClF_2N}$	2	
52	4- F	4- F	CH_3	CH_3	86	188 - 189	$\mathrm{C_{17}H_{20}ClF_2N}$	10	81
53	3-CF₃	3-CF₃	CH_3	CH_3	77	198–200 (ox)	$\mathrm{C}_{21}\mathrm{H}_{21}\mathrm{F}_6\mathrm{NO}_4$	100	
54	4-C1	4-C1	CH_3	CH_3	62	190 - 194	$\mathrm{C_{17}H_{20}Cl_3N}$	50	
55	4- F	4-Cl	CH_3	CH_3	85	173-176	$\mathrm{C_{17}H_{20}Cl_2FN^c}$	100	
56	4-F	4- F	CH_3	н	75	188–192 (ox)	$C_{18}H_{19}F_2NO_4$	10	97
57	4-Cl	4- Cl	CH_3	Н	63	212–214 (ox)	$\mathrm{C_{18}H_{19}Cl_2NO_4}$		
58	Н	н	N			135-136	$C_{19}H_{24}ClN^b$	10-30	
59	Н	Н	ĸ	\rangle		215-217	$\mathrm{C}_{20}\mathrm{H}_{26}\mathrm{ClN}^b$	>100	
60	Н	н	N			208-209	$C_{19}H_{24}ClNO^b$	>100	
a Soo for	otnota f. Tabl	T b Duorde	uala deseril	od (Non	al only				

^a See footnote f, Table I. ^b Previously described. ^c N anal. only.

ratories, Brighton, England) which was read to an accuracy of $\pm 0.05^{\circ}$. The effect of the compound was computed from the mean cumulative rise in temp at the intervals T_2 , T_4 , and T_6 . The mean cumulative rise is thus defined as: $\Delta^{\circ}C = T_2 + T_4 + T_6 - 3T_0$.

 $T_6 - 3T_0$. The hyperthermic effect was related to dose and, using suitable doses, a dose of drug could be defined which gave a cumulative rise in temp of 10° greater than controls, thus yielding the ED₁₀ values recorded in Tables I, II, and III.

The inhibition of the uptake of 5-HT in platelets was detd as follows. A suspension of human platelets in saline was preincubated with drug for 5 min before adding ¹⁴C-labeled 5-HT. After incubation for a further 20 min the suspension was chilled and filtered through a Millipore filter. The filter was washed and transferred to a vial of dioxan naphthalene-phosphor for counting. The radioactivity of the platelets is a measure of the uptake of 5-HT. The percentage inhibition produced by drugs as compared with saline-treated controls is recorded in Tables I and III.¹² Logarithmically spaced doses of compd were administered orally to groups of 5–10 mice, and the percentage mortality at day 7 was detd by inspection. LD_{20} 's were computed by standard

logit analysis, but results for selected compounds were tabulated. N-Substituted ethyl β -aminopropionates (IV) were prepd by mixing equimolar proportions of the appropriate secondary or tertiary amine and ethyl acrylate and fractionally distg the product.¹³

Mannich base hydrochlorides (V) were prepd by standard methods from the appropriately substituted acetophenones.

N-Substituted 3-Amino-1,1-diphenylpropan-1-ols (VI).-The

⁽¹²⁾ Full details will be published by A. R. Somerville in Eur. J. Pharmacol.

⁽¹³⁾ D. W. Adamson, J. Chem. Soc., S144, (1949).

general methods employed are illustrated for symmetrically or unsymmetrically substituted carbinolamines by the following 2 examples.

1,1-Di-(4-fluorophenyl)-3-dimethylaminopropan-1-ol.—A soln of 29.0 g (0.2 mole) of ethyl β -dimethylaminopropionate in 50 ml of anhyd Et₂O was added gradually with stirring to a cooled (0°) Et₂O soln of a Grignard reagent prepd from 105 g (0.6 mole) of p-BrC₆H₄F and 14.6 g (0.6 mole) of Mg. After stirring in the cold for 1 hr and then refluxing for 2 hr, the cooled mixture was decompd with 200 ml of a 10% w/v soln of NH₄Cl. Basification with NH₄OH and extraction with CHCl₈ (3 × 250 ml) afforded a CHCl₈ soln which on drying and evapn gave 58.0 g of a crude oil. This crude product was dehydrated without further purification.

3-Dimethylamino-1-(4-fluorophenyl)-1-phenylpropan-1-ol.— β -Dimethylaminopropiophenone HCl (21.4 g, 0.1 mole) was added portionwise to a cooled (0°), stirred Et₂O soln of the Grignard reagent prepared from 35 g (0.2 mole) of *p*-BrC₆H₄F and 4.8 g (0.2 mole) of Mg. After stirring in the cold for 1 hr and then refluxing for 2 hr, the cooled mixture was decompd and worked up as above. The crude colorless solid (11 g) was dehydrated without further purification.

1,1-Di-(4-fluorophenyl)-3-dimethylaminoprop-1-ene (25).—A soln of 41.0 g (0.14 mole) of the carbinolamine in 250 ml of AcOH and 80 ml of concd HCl was refluxed for 30 min. The soln was concd under reduced pressure, dild with H_2O , and basified with NH₄OH. The base was extracted Et₂O, and Et₂O soln was dried

and evapd. Distn under reduced pressure gave 20.5 g of an oil. The base was converted into its hydrochloride in anhyd Et₂O. Crystn of the hydrochloride from EtOAc-EtOH gave an anal. sample, mp 211-213°.

1,1-Di-(4-fluorophenyl)-3-dimethylaminopropane (53).—A soln of 5 g of the olefin HCl in 20 ml of EtOH was hydrogenated at atm temp and pressure using 2.5 g of 5% Pd-C. After 1 mole of H_2 had been absorbed, the catalyst was filtered, the soln was concd, and the product was pptd with Et₂O. Filtration give 3.0 g of material. Crystn from EtOAc-EtOH gave an anal. sample, mp 188-189°.

1,1-Diphenylprop-1-enylamine (1).—Diethyl phosphonoacetate (106 g) was added dropwise to a stirred suspension of NaH (15 g) in dry dimethoxyethane (500 ml) at 0°. The mixture was stirred for 1 hr after the evoln of H₂ ceased, and a soln of benzophenone (91 g) in dimethoxyethane (100 ml) was then added dropwise. The mixture was stirred at 20° for 2 hr, then poured into H₂O (2000 ml), and extracted (Et₂O). Evapn and distn of the extract gave $\beta_{,\beta}$ -diphenylacrylonitrile (63 g, mp 48-49°). This (60 g) was added dropwise to a stirred soln of LAH (20 g) in dry Et₂O (500 ml) at -20°. The mixture was stirred for 2 hr at -20° and for 15 min at 0°. Excess LAH was destroyed by addn of H₂O, and the organic phase was sepd, dried (MgSO₄), and evapd. 1,1-Diphenylprop-1-enylamine (1) was isolated from the residual oil as its hydrochloride (58 g, mp 206-208°) by addn of ethereal HCl. The hydrochloride, recrystd from EtOH-Et₂O, had mp 214-216°.

Notes

Synthesis of 3-Trifluoromethyl Steroids^{1a}

ABRAHAM F. PASCUAL^{1b} AND MANFRED E. WOLFF^{1c*}

Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94122

Received July 28, 1970

The function of the carbonyl moiety of C-3 of steroid hormones in eliciting the biological response has been the subject of intensive study in this laboratory. Among C-2 and/or C-3 substituted steroids prepared to test the possibility that π bonding,² high electron density, or H bonding² might be important in terms of steroid-receptor interaction have been steroidal cyclopropanes² and nitro derivatives.³ In the present study, the preparation of steroidal C-3 substituted CF₃ derivatives was undertaken, inasmuch as CF₃ represents a center which is both electron rich and capable of H bonding.

The introduction of a CF₃ group by photochemical addition of CF₃I across a double bond has been applied to 3β -ethoxy- 17β -hydroxypregna-3,5-dien-20-one ace-

tate⁴ but such reactions with unconjugated olefinic steroids have not been reported. In the present study, several methods were tried in preparing the 3-CF₃ steroids. Attempted conversion of a 3-CO₂H substituent into a 3-CF₃ group by reaction with SF₄⁴ failed. Likewise, reaction of a 3-keto steroid, dihydrotestosterone acetate, with F₃CMgI⁵ yielded only starting material. Finally, employing a modified method of Godfredsen and Vangedal,⁶ the 3-CF₃ steroid derivative was obtained.

A solution of 5α -pregn-3-en-20-one (1) in CCl₄, CF₃I, and a small amount of pyridine was irradiated with uv light for 8 hr under N₂. Only one product, 3α trifluoromethyl-4 β -iodo- 5α -pregn-20-one (2), was isolated from the reaction mixture although 8 isomeric adducts (4 cis and 4 trans) could be formed from this reaction. The stereochemistry of 2 was established from further reactions as shown in Scheme I and from the nmr spectra of the adduct and its derivatives.

The C-19 Me peak of 2 was shifted 0.36 ppm downfield compared with 1 and upon hydrogenolysis of the iodo group with LAH, the C-19 Me resonance shifted 0.33 ppm upfield. As it is well known that electronegative groups produce a deshielding effect (0.25 ppm) on the C-19 Me group when they are in a 1:3 diaxial

^{*} Address correspondence to this author.

^{(1) (}a) This investigation was supported in part by a Public Health Service Research Grant AM-05016 from the National Institute of Arthritis and Metabolic Diseases, U. S. Public Health Service. (b) Taken from a part of the Ph.D. Thesis of A. F. Pascual, University of California, San Francisco, Calif., 1969. (c) It is a pleasure to acknowledge the contribution made to this work by Barbara Rehermann Vicente who carried out preliminary studies on the photolysis reaction as part of her M.S. research.

⁽²⁾ M. E. Wolff, W. Ho, and R. Kwok, J. Med. Chem., 7, 577 (1964).

⁽³⁾ M. E. Wolff and R. C. Boguslaski, ibid., 11, 285 (1968).

 ^{(4) (}a) W. R. Hasek, W. C. Smith, and V. A. Engelhardt, J. Amer. Chem. Soc., 82, 543 (1960).
 (b) D. G. Martin and F. Kagan, J. Org. Chem., 27, 3164 (1962).

^{(5) (}a) R. N. Haszeldine, J. Chem. Soc., 1273 (1954). (b) E. T. McBee,

R. D. Battershell, and H. P. Braedndlin, J. Org. Chem., 28, 1131 (1963).

⁽⁶⁾ W. Godfredsen and S. Vangedal, Acta Chim. Scand., 15, 1768 (1961).